# Radiation Related Second Cancers

#### Stephen F. Kry, Ph.D., D.ABR.





Making Cancer History®

### Objectives

- Radiation is a well known carcinogen
  - Atomic bomb survivors
  - Accidental exposure
  - Occupational exposure
  - Medically exposed
- Radiotherapy can cause cancer

#### Questions/Outline

- Magnitude of risk
- Causes of second cancers
- Location/Dose response
- Other Characteristics
- Impact of advanced techniques
- Options to reduce risk

#### Questions/Outline

- Magnitude of risk
- Causes of second cancers
- Location/Dose response
- Other Characteristics
- Impact of advanced techniques
- Options to reduce risk

## Magnitude of the risk

- How many are there?
- How many are due to radiation?

Proportion of second cancers attributable to radiotherapy treatment in adults: a cohort study in the US SEER cancer registries

Amy Berrington de Gonzalez, Rochelle E Curtis, Stephen F Kry, Ethel Gilbert, Stephanie Lamart, Christine D Berg, Marilyn Stovall, Elaine Ron\*

#### Summary

Background Improvements in cancer survival have made the long-term risks from treatments more important, Lancet Oncol 2011; 12: 353-60

**∌**@<sup>†</sup>

## Study

- 9 SEER registries (~10% of US population)
  - Lots of patients, limited information on each
  - 1973 2002
  - 15 different primary sites
- How many second cancers:
  - 5 year survivors
- How many from RT:
  - Radiation attributable second cancers
    - Excess second cancers in RT population versus non RT

#### # of RT patients

| Total        | 485481 |  |
|--------------|--------|--|
| Testes       | 7862   |  |
| Prostate     | 128582 |  |
| Cervix       | 14685  |  |
| Breast       | 150661 |  |
| Lung (NSC)   | 51270  |  |
| Larynx       | 17070  |  |
| Oral/pharynx | 24880  |  |

|              | # of RT<br>patients | #<br>Second<br>cancers | Rate of<br>second<br>cancers<br>(%) |  |
|--------------|---------------------|------------------------|-------------------------------------|--|
| Oral/pharynx | 24880               | 3683                   | 15                                  |  |
| Larynx       | 17070               | 3583                   | 21                                  |  |
| Lung (NSC)   | 51270               | 2395                   | 5                                   |  |
| Breast       | 150661              | 12450                  | 8                                   |  |
| Cervix       | 1/685               | 12100                  | 0                                   |  |
| Droctato     | 120502              | 11207                  | 7                                   |  |
|              | 120002              | 11292                  | 7                                   |  |
| Testes       | 7862                | 628                    | 8                                   |  |
| Total        | 485481              | 42294                  | 9                                   |  |

#### Second Cancer Risk

- 9% of patients developed a second cancer.
- Why?
- Many of these are expected
  - General population gets cancer
  - #1 cause of cancer: AGE
- Cancer patients get more cancer than general public

- Common risk factors: genetic or environmental

RT patients have additional risk factor

- How important is this factor???

|              | # of RT<br>patients | #<br>Second<br>cancers | Rate of<br>second<br>cancers<br>(%) |  |
|--------------|---------------------|------------------------|-------------------------------------|--|
| Oral/pharynx | 24880               | 3683                   | 15                                  |  |
| Larynx       | 17070               | 3583                   | 21                                  |  |
| Lung (NSC)   | 51270               | 2395                   | 5                                   |  |
| Breast       | 150661              | 12450                  | 8                                   |  |
| Cervix       | 1/685               | 12100                  | 0                                   |  |
| Droctato     | 120502              | 11207                  | 7                                   |  |
|              | 120002              | 11292                  | 7                                   |  |
| Testes       | 7862                | 628                    | 8                                   |  |
| Total        | 485481              | 42294                  | 9                                   |  |

|              | # of RT<br>patients | #<br>Second<br>cancers | Rate of<br>second<br>cancers<br>(%) | Excess<br>cancers<br>due to<br>RT | % of<br>excess<br>cancers<br>due to<br>RT |  |
|--------------|---------------------|------------------------|-------------------------------------|-----------------------------------|-------------------------------------------|--|
| Oral/pharynx | 24880               | 3683                   | 15                                  | 182                               | 5                                         |  |
| Larynx       | 17070               | 3583                   | 21                                  | 193                               | 5                                         |  |
| Lung (NSC)   | 51270               | 2395                   | 5                                   | 152                               | 6                                         |  |
| Breast       | 150661              | 12450                  | 8                                   | 660                               | 5                                         |  |
| Cervix       | 14685               | 1289                   | 9                                   | 214                               | 17                                        |  |
| Prostate     | 128582              | 11292                  | 9                                   | 1131                              | 10                                        |  |
| Testes       | 7862                | 628                    | 8                                   | 150                               | 24                                        |  |
| Total        | 485481              | 42294                  | 9                                   | 3266                              | 8                                         |  |

|              | # of RT patients | #<br>Second<br>cancers | Rate of<br>second<br>cancers<br>(%) | Excess<br>cancers<br>due to<br>RT | % of<br>excess<br>cancers<br>due to<br>RT | % of RT<br>patients with<br>RT induced<br>second<br>cancers |
|--------------|------------------|------------------------|-------------------------------------|-----------------------------------|-------------------------------------------|-------------------------------------------------------------|
| Oral/pharynx | 24880            | 3683                   | 15                                  | 182                               | 5                                         | 0.7                                                         |
| Larvnx       | 17070            | 3583                   | 21                                  | 193                               | 5                                         | 1.1                                                         |
| Lung (NSC)   | 51270            | 2395                   | 5                                   | 152                               | 6                                         | 0.3                                                         |
| Breast       | 150661           | 12450                  | 8                                   | 660                               | 5                                         | 0.4                                                         |
| Corvix       | 14685            | 12430                  | 0                                   | 214                               | 17                                        | 1 5                                                         |
|              | 120502           | 11207                  | 7                                   | 214                               | 10                                        | 0.0                                                         |
|              | 128582           | 11292                  | 9                                   | 1131                              | 10                                        | 0.9                                                         |
| lestes       | /862             | 628                    | 8                                   | 150                               | 24                                        | 1.9                                                         |
| Total        | 485481           | 42294                  | 9                                   | 3266                              | 8                                         | 0.7                                                         |

#### Interesting considerations

- Elevated risk of second cancers even for primary sites with poor prognosis (lung)
  - RR: 1.18 (Berrington 2011), 6-7% attributable to RT

- (Maddam 2008, Berrington 2011)

 Elevated risk of second cancers even for old patients (prostate).

- RR: 1.26 (Berrington 2011), 5-10% attributable to RT

- (Brenner 2000, Maddam 2008, Berrington 2011)

#### Second Cancers from RT

- Most (~90%) of second cancers are not from RT.
  - Age, genes, environment...
- Rule of thumb:

10% of survivors develop a second cancer 10% of those are due to their radiation

- ~1% of 1 yr survivors treated with RT develop an RT-induced second cancer
  - Small number, but 12 million survivors and counting (NCRP 170)

#### Questions/Outline

- Magnitude of risk
- Causes of second cancers
- Location/Dose response
- Other Characteristics
- Impact of advanced techniques
- Options to reduce risk

#### Location

- Where do second cancers occur?
- Diallo et al., Int J Radiat Oncol Biol Phys 2009
  - 12% within geometric field
  - 66% beam-bordering region
    - Dosimetry is very challenging
  - 22% out-of-field (>5 cm away)
- Get most second cancers in high and intermediate dose regions

#### Location

- Low doses (<1 Gy; >10 cm from field edge)
  - Studies typically don't find increased risk
  - except for sensitive organs: lung after prostate (Brenner 2000)
    - Most likely too few patients
    - Low absolute risk

Higher doses (in and near treatment field)

- Most organs show elevated risk
- See carcinomas and sarcomas

#### Dose relationship: Low Doses

- 0.1 2.5 Sv: Linear
- 5%/Sv metric

Hall EJ, Int J Radiat
 Oncol Biol Phys.
 65:1;2006

Cancer Rates (1958–94) in A-bomb Survivors Relative to Those for an Unexposed Person 2.5 1.5 2.0 Risk to general population 5%/Sv 1.4 1.5 Relative Risk 1.3 1.0 0.5 1.5 2.0 1.2 1.1 -1.0 0.1 0.2 0.3 0.0 0.4 0.5 Gamma Dose Equivalent (Sv)

#### Dose relationship: High Doses

- > 2.5 Sv ???
- Linear?
- Linear exponential? (due to cell kill)
- Something inbetween, e.g., linear plateau?



#### Fontenot et al.

Int. J. Radiation Oncology Biol. Phys., Vol. 74, No. 2, pp. 616-622, 2009

# Dose Response: High Doses Apparently, every organ is different!



#### Rectum



Sigurdson, Lancet, 2005

Suit, Rad Res, 2007

#### Dose Response: High Doses

#### Skin

#### Watt et al., JNCI 2012



#### Location/Dose Response Summary

- Distribution of second cancers over all dose ranges.
- Most occur in intermediate & high dose regions
  - Specifics will depend on primary site
  - Different tissues respond differently at high dose
- Substantial need for improved understanding
  - Particularly for risk estimation models
- Cautions for estimating risks
  - For RT applications, can't use simple linear no-threshold.
  - Most models (based on limited data or biological models) only assume linear exponential
  - This also doesn't describe most organs!
  - Need more good epidemiologic studies

#### Questions/Outline

- Magnitude of risk
- Causes of second cancers
- Location/Dose response
- Other Characteristics
- Impact of advanced techniques
- Options to reduce risk

#### Severity of second cancers

• Limited study, but no indication that second cancers offer better or worse outcomes than primary cancers (Mery et al. Cancer 2009)

#### Age effects

- Pediatrics have lots of second cancers
- Observed/Expected (O/E):
  - Adults: 1-2 (Moon 2006)
  - Pediatrics: 5-15

(Inskip 2006)

- Genetic predisposition
- More sensitive to radiation
- Second cancers are a major concern
- · Hard to compare vs. unirradiated population

#### Time since irradiation

- 5 year latency assumption
  - 2 years for leukemia
- RT versus non-RT

|                              | Latency 5–9 years   | Latency 10-14 years | Latency ≥15 years   | p-trend |
|------------------------------|---------------------|---------------------|---------------------|---------|
| Oral/pharynx                 | 1-12 (0-99 to 1-27) | 1·14 (0·95 to 1·38) | 0-95 (0-74 to 1-22) | 0-34    |
| Rectum*                      | 1-13 (0-94 to 1-35) | 1-33 (1-03 to 1-70) | 0-91 (0-64 to 1-27) | 0-54    |
| Larynx                       | 1-57 (1-08 to 2-36) | 1-04 (0-66 to 1-70) | 1-29 (0-75 to 2-30) | 0-45    |
| Lung (non-small cell)        | 1-12 (0-98 to 1-27) | 1-37 (1-12 to 1-65) | 1-62 (1-23 to 2-09) | 0-0079  |
| Female breast                | 1-17 (1-05 to 1-30) | 1-42 (1-24 to 1-62) | 1-56 (1-34 to 1-81) | 0-0013  |
| Cervix (external beam)*      | 1-18 (0-79 to 1-75) | 1-55 (1-00 to 2-40) | 2-59 (1-84 to 3-68) | 0-0032  |
| Endometrium (external beam)* | 1-30 (1-08 to 1-56) | 1-99 (1-60 to 2-47) | 2-18 (1-78 to 2-65) | <0-0001 |
| Prostate (external beam)*    | 1-39 (1-29 to 1-50) | 1·59 (1·41 to 1·80) | 1-91 (1-53 to 2-38) | 0-0031  |
| Thyroid*                     | 0-89 (0-49 to 1-55) | 1-03 (0-47 to 2-14) | 1-21 (0-64 to 2-17) | 0-47    |

#### Gender effects/organ risks



Female cancer incidence. Lifetime cases/100k exposures to 0.1 Gy



BEIR VII report:

- Different organs show different sensitivities
- Increased sensitivity for younger individuals
- Females more sensitive than males...?
  - Sensitive gender organs: breast
  - Lung? May be simply related to lower background rates and comparable sensitivity. (Preston 2007)

# Summary of other characteristics

- Most sensitive organs:
  - Breast, thyroid, lung
- Pediatrics most sensitive
- Females more sensitive
- 5 year latency
  - Continued elevated risk

#### Questions/Outline

- Magnitude of risk
- Causes of second cancers
- Location/Dose response
- Other Characteristics
- Impact of advanced techniques
- Options to reduce risk

## Reducing the risk

 Methods and thoughts on reducing the risk of second cancers

#### Reducing treatment volume

- Reducing CTV. Usually hard.
  - Testicular volume treated with RT has been reduced
  - Hodgkin Lymphoma: involved fields rather than entire chest
  - TBI can be replaced by targeted bone marrow irradiation (Aydawan et al. Int J Radiat Oncol Biol Phys. 2010)
- Reducing PTV
  - Better setup
  - Better motion management

#### Modality: scanning protons

- Much interest in scanning beams
- No external neutrons
- Still internal neutrons, gammas
  - Up to half of dose equivalent to near organs
  - Negligible dose to distant organs
- Scanning beam is an improvement,

but is not free from out-offield dose

Fontenot et al. PMB 2008



#### Modality: Scatter Protons vs. Photons

- Size of PTV?
- Reduce exit dose can substantially reduce treated volume for some cases (CSI)
- Near to field, dose equivalent much lower with protons
  - Less lateral scatter
  - Less exit dose
- Less risk
- Effect more pronounced at lower p+ energy
- Modeled results



**Fontenot, 2008, Phys Med Biol.** *HT/D* as a function of lateral distance (along the patient axis) from the isocenter from this work compared to IMRT values collected from Kry *et al* (2005) and Howell *et al* (2006).

## Modality: photon IMRT

- High energy therapy (vs. low energy)
- Produces neutrons
- Requires fewer MU
- High energy photons scatter less
- No significant difference between 6 MV and 18 MV (Kry et al, Radioth Oncol 91:132;2009)
- Overestimated neutron dose equivalent in literature
- 10 MV may be optimal energy for deep tumors

(Kry 2005, Int J Radiat Oncol Biol Phys)

#### IMRT vs. conformal

- Balance between increased out-of-field dose with decreased PTV
- Depends on how much irradiated volume is reduced (reduced risk)
- Depends on how much modulation is employed (increased risk)

(Kry, 2005, Int J Radiat Oncol Biol Phys, Howell, 2006, Med Phys, Ruben et al Int J Radiat Oncol Biol Phys. 2008)



#### **Beam modifiers**

- <u>Wedges</u>
  - Physical wedges → increase out of field dose
     by 2-4 times (Sherazi et al, 1985, Int J Radiat Oncol Biol Phys)
  - Dynamic or universal wedges -> no increase (Li et al, 1997, Int J Radiat Oncol Biol Phys)
- <u>MLC orientation</u>
  - Tertiary MLC reduces dose (extra shielding)
  - Align MLC along patient body reduces dose much more than across the patient (Mutic, Med Phys, 1999)

## Flattening filter free

- Out of field dose usually (but not always) reduced for FFF
- Most reduced when head leakage is most important (i.e., FFF is best when):
  - Large distances from the treatment field
  - Small targets
  - High modulation





Kragl et al, Z Med Phys 2011;21:91

## Other approaches

- Add head shielding
  - Pb for photons
    - Heavy -> manufacturing challenges
  - Steel and PMMA for protons (Taddei et al. Phys Med Biol 2008)
    - Could reduce external dose substantially (approach scanning beam doses)
- MLC jaw tracking

(Joy et al. JACMP 2012)

 Small reduction in integral dose



## Summary of risk reduction

- There are methods to reduce the risk
- Some are complex
- Some are relatively simple

#### Remaining Issues

 We do know a lot about second cancers, but many questions remain.

- Tools for answering these questions:
  - Epidemiologic studies
  - Calculational studies

# Challenges

- Epidemiology studies
- Follow up means results are decades later, treatment modality obsolete
  - No IMRT/proton epidemiology studies
- Studies have large populations OR patient specific data
- Dosimetry is very difficult
- Hard to coordinate
- Expensive

- Calculational studies
- Based on models
- Dose response highly uncertain
- Neutron RBE highly uncertain
- Rarely account for different sizes of patients
- Rarely account for range of different plans

## Final thoughts

- ~1% of RT survivors develop a second cancer due to RT (millions of survivors)
- Many remaining questions
  - Dose response/Dose-volume effects
  - Impact of modern technology
  - Causes of second cancers
- Cancer patients are not irradiated for the fun of it.
  - Therapeutic benefit outweighs risk.
  - Minimize the risk as much as possible.

Thank you!